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Abstract 

The original and primary task of self-test 
program Smalley3 was independent verification 
of the logic design of the LOLA DU (Lunar 
Orbiter Laser Altimeter Digital Unit) micro-
processor. Tasks were added to verify continuing 
correct operation of this central processing unit 
(CPU) under margin testing for supply voltage, 
ambient temperature, and clock frequency.  
Finally, an on-orbit diagnostic task was added so 
that any malfunctions of LOLA in lunar orbit 
can be identified as faults in, or not in, the CPU. 

The Lunar Reconnaissance Orbiter space-
craft will be launched to the Moon in 2009 with 
six scientific instruments including LOLA, each 
containing an embedded microprocessor to 
perform real-time subsystem control calcula-
tions.  LOLA's CPU is a small, custom-designed 
processor, designed to meet the mission require-
ments while minimizing resources. This 8-bit 
machine is essentially code compatible with 
Intel's 8085 but is implemented in modern 
technology, an advanced, radiation-hardened 
0.15 µm gate array, with the only logic element 
types being a 4:1 multiplexor and a flip-flop. 

This paper explains the fundamental 
structure of the verification task, shows how 
particular instructions are verified, presents a 
high-coverage scheme for detecting inadvertent 
RAM alteration, describes subsystem testing of 
RAM, and reviews the results of the verification 
effort.  Some infamous CPU design flaws from 
both the commercial industry and aerospace 
flight control systems are discussed. 

Lunar Orbiter Laser Altimeter 
The Lunar Reconnaissance Orbiter (LRO), to 

be launched early in 2009, will carry six scientific 
instruments including the Lunar Orbiter Laser 

Altimeter (LOLA).  Laser altimetry will produce 
very detailed and precise geodetic maps (why not 
“selenodetic?) to support various purposes, such as 
where to drill for ice, good places to build a 
permanent base, etc.  Similarly to the other 
instruments, LOLA’s copious data stream is 
controlled by a Digital Unit (DU), whose CPU must 
be radiation-hardened, nimble though not a heavy-
duty number cruncher, and above all reliable. 

NASA’s Office of Logic Design (OLD) has 
designed the “80k85” which fits into a compact 
corner of an Actel Field Programmable Gate Array 
(FPGA) to be this CPU.  As the name suggests, it is 
logically a near-clone of Intel’s 8085 micro-
processor, upgraded significantly in speed and 
general reliability, with solid radiation hardening.  
Development complexity and costs were reduced by 
adopting an instruction repertoire of proven 
suitability for embedded control: not a RISC 
architecture, but no prodigal consumer of gates by 
FPGA standards.  This approach also leverages 
existing software tools and the skill sets of their 
users.  Software development reliability is enhanced 
by adding an internal interrupt trap for unimple-
mented operation codes. 

Processor Design Verification Issues 
Unlike software, the logic design of a 

processor (or microprocessor) is broken down into a 
large number of small simple design tasks that 
interact in a small number of relatively simple 
ways.  It would be hard to imagine a design flaw in, 
say, instruction implementation, that would cause 
the kind of few-times-in-a-trillion hangups that 
occasionally freeze our desktops and laptops. 

The catch is the large number of these tasks; 
somebody’s going to nod off somewhere in the 
long, tedious, and repetitious path through them, 
and there had better be something independent, 
rigorous, and thorough to spot the problems.  IBM 
and Intel (though the giants of the universe) have 
been caught napping, as we shall see.  The other 



catch is there are dimensions of design other than 
logical, and we’ll examine an electrical design issue 
in a spacecraft processor that might have been 
spotted by such an independent-rigorous-thorough 
testing tool. 

IBM System 4π AP-101 Long Divide, 1987 
When NASA sought a more-or-less-COTS 

computer to be the Space Shuttle’s General Purpose 
Computer (GPC), IBM Federal Systems Division 
bid a new “Advanced Processor” variation on their 
existing System 4π architecture which had seen 
service in aircraft and spacecraft.  A critical 
requirement was that the GPC implement all the 
System 360 instructions with exactly the same 
results, to eliminate any discrepancies between the 
GPC’s calculations and those of the 360 Model 75 
mainframes in Mission Control at JSC. 

In pursuit of this goal, IBM’s design for the 
AP-101 included a Divide Exponential Double 
(DED) to handle floating-point numbers with a 
mantissa of 14 hexadecimal digits.  To ensure that 
interrupts would be taken quickly, they made DED 
(and its register-access twin DEDR) interruptible 
within itself: it could be interrupted after the 
development of any quotient digit.  When it was 
pointed out that this DED design was so slow that a 
subroutine using the single-precision DE could beat 
it [1], IBM redesigned DED to run without 
interruption.  Perhaps because of the short time 
frame for this redesign (AP-101B), it was 
straightforward, simple, and correct. 

For deployment in 1990, IBM was required to 
re-implement the AP-101 in more up-to-date 
technology, resulting in the AP-101S.  Part of the 
upgrade was a significantly more elegant algorithm 
for DED and DEDR, which worked for most inputs 
but produced wrong answers for certain cases 
where the low-order part of the divisor was not zero 
[2].  We haven’t found any documentation of what 
verification was performed and why it wasn’t 
sufficient, but the discrepancy reports noted that it 
was “difficult to define” which inputs produced the 
wrong results. 

Curiously, the HAL/S compiler developers 
seem to have been aware of a problem much earlier 
than the date on the discrepancy reports, because 
they didn’t use DED at all, or DEDR for anything 

but the remainder function DMOD, which uses 
short divisors (understandably), thus avoiding the 
problem.  At least, that’s the observation made by a 
code audit triggered by the discrepancy.  A 
subroutine I2DEDR was substituted for DEDR, just 
in case there were more error cases than had been 
found, and the compiler was updated accordingly. 

Intel Pentium P6 Core Long Divide, 1994 
This is the famous Pentium bug [3, 4] that was 

discovered by a number-theory application 
developer.  Intel, facing the fact that increases in 
processing speed aren’t aided by an equivalent to 
Moore’s Law for component density, had made a 
major effort to speed up double-precision divide in 
the P6 core, and it involved several tables in ROM.  
The design was correct as far as we know, but the 
implementation suffered from a failure to include in 
the ROM a significant part of one of the tables. 

It’s easy to see now that a thorough low-tech 
proofreading of the ROM tables would have 
prevented this embarrassment.  What’s interesting 
is that the kind of tool that is the subject of this 
paper has only a pretty good chance of detecting 
such a fault, because not all combinations of high-
precision inputs can be tested, and some kind of 
sampling is the only feasible approach.  For two 64-
bit inputs, the number of combinations is 2128; if 
each combination takes one microsecond to test, the 
test will run for 2108 seconds or about 292 days or 
about 284 years—compared with the age of the 
universe, about 234 years!  We don’t know if Intel’s 
verification suite contained the same sort of 
combined systematic and Monte Carlo inputs as 
Smalley3, but we can imagine that it might still 
omit the cases that depend on that table. 

Having said that, we can criticize Intel for not 
having constructed a verification test designed to 
exercise every number in all those tables. 

Sandia/JPL 1802 Register Interaction, 1981-6 
In the microprocessor used in Galileo, a 

fabrication upgrade from a 2-inch wafer to a 4-inch 
wafer included process changes to improve the 
speed of a 16x16 register array.  Unfortunately, this 
allowed a number of analog-type issues like off-
nominal supply voltage and pulse delays in poly-
silicon lines, combined with a heavy population of 



ones in certain registers, to create a digital logic 
fault that copied certain bits of one register to 
another register.  JPL documentation declares that 
understanding the exact physical mechanism was 
extremely challenging, but in 1987 they were able 
to identify the conditions for the fault and construct 
a screening test to select the more robust units.  
They also introduced a software restriction to avoid 
the conditions [5]. 

For our 80k85 microprocessor, the approach 
taken by Smalley3seems to address this kind of 
problem, especially when used for testing of 
voltage, temperature, and clock rate margins.  In 
fact, it found a somewhat similar fault, a stretching 
of fan-in/fan-out rules, which was then fixed as a 
logic design error. 

The 80k85 Verification Challenge 
The legacy of these horror stories is a top-level 

requirement that 80k85 verification be rigorous and 
thorough, and as close to exhaustive as is feasible.  
The architecture, though generally 8-bit, is 16-bit in 
places, particularly the instruction DAD (Double-
precision register Add).  An exhaustive test of all 
combinations of its two 16-bit inputs would 
comprise 232 cases and take days to run.  If the only 
purpose of this effort had been to create a one-time 
logic design verification test, that might have been 
acceptable, but the ability to run our verification 
repeatedly, varying margins or even just letting the 
pseudo-random number generator produce different 
Monte Carlo samples, was paramount. 

Reaching way back for a successful model to 
follow, we noticed that both the Block I and Block 
II Apollo Guidance Computers (AGC) had self-
check programs to augment the manual design 
verification process, and to assure at any time that 
all of the logic in a particular AGC was still 
working.  That effort had the interesting side effect 
that an instruction EDRUPT (Ed Smalley’s private 
interrupt) was added to the design to facilitate 
including interrupt logic in the test, but we didn’t 
need to emulate that in the 80k85 development. 

One mitigating factor in the verification 
challenge was that (again like the AGC) the 80k85 
had been running, apparently successfully, for some 
time when the verification development began.  The 
phased development plan for Smalley3 was thereby 

simplified, since there was no need to construct a 
rigid sequence of baby steps for the first few 
instructions tested.  Instead, the phasing was simply 
a progression from instruction verification to the 
two levels of RAM testing. 

While the RAM corruption detector is an 
integral part of the logic design verification process 
(to detect any unintended changes to RAM contents 
made by instructions), the rest of the RAM testing 
is really advanced burn-in and degradation 
detection of the RAM as a distinct subsystem. 

8085/80k85 Architecture 
This is an 8-bit machine that uses 16-bit 

addresses to access 64K bytes of RAM, either one 
at a time or a pair in little-endian fashion.  There are 
7 data registers of 8 bits: 

• A (accumulator); 
• B, C, D, E; 
• H, L 

of which, BC and DE occasionally function as 16-
bit data registers, and HL frequently functions as a 
16-bit indirect addressing register. 

Other 16-bit addressing registers are: 

• SP (stack pointer); 
• PC (program counter). 
There is a set of condition flags sometimes 

lumped as “register F,” and the combination of F 
and A sometimes functions as a 16-bit PSW 
(program status word).  The 8085 has an interrupt 
mask and a serial I/O (UART) port, which were not 
implemented in the 80k85. 

For input/output purposes, 8-bit addresses are 
used to access 256 ports, which in the 80k85 are 
allocated 128 to input and 128 to output. 

Overview of 8085/80k85 Instructions 
The instruction repertoire is a rich set of 

simple functions suitable for an embedded 
controller/sequencer, hence its appeal for use in the 
LOLA DU.  It’s rich in data moving, condition-
code-driven branching, Boolean, and arithmetic 
operations, but stops short of having multiply and 
divide operations—or any floating point. 



Instructions are one to three bytes in length, 
with all operation coding within the first byte.  The 
second byte of 2-byte instructions is immediate data 
or an I/O port address; the second and third bytes of 
3-byte instructions are direct RAM addresses. 

In principle, this implies 256 distinct operation 
codes, but 10 are unused and one (DAA, Decimal 
Adjust) is not implemented in the 80k85 because it 
is dedicated to decimal arithmetic.  However, there 
are only 70 functionally distinct instructions, many 
with parametric variations such as 3-bit register 
addresses and 3-bit condition code tags.  The 
extreme case is MOV, with only 2 bits of op code 
and register addresses of 3 bits for both source and 
destination.  One of the 3-bit addresses specifies, 
not a register, but indirect access to a byte of RAM 
via the HL pair. 

The 80k85 implements four of the five 8085 
interrupts, but does not implement their priority 
scheme. 

Functional Grouping of 80k85 Instructions 
To allow design verification to focus on 

particular functional areas, or even test incomplete 
80k85 units, ten independently testable functional 
groups of instructions were defined: 

1. NOP and single-byte transfers; 

2. Double-byte transfers; 

3. Single-byte arithmetic binary operations; 

4. Double-byte arithmetic binary operations; 

5. Single-byte Boolean binary operations; 

6. Assorted unary operations; 

7. Transfers of control (except HLT); 

8. Stack operations; 

9. Data input & output operations; 

10. Interrupt management & illegal op codes, 

where “binary” and “unary” refer to the number of 
inputs to a given operation.  Verification of HLT is 
obviously a very special case, but it is addressed. 

Introduction to Smalley3 
The primary purpose of Smalley3 is to validate 

the fidelity of the 80k85’s behavior, when executing 

Intel 8085 instructions and interrupts, to the “gold 
standard” of 8085 function exhibited by the Harris 
80C85RH, except as noted herein.  The 80k85 is an 
image, in the Actel RTAX-S FPGA, created by 
NASA’s Office of Logic Design (“OLD”) to allow 
8085 code to run on a machine much faster and 
more radiation-hardened than Intel’s original chip.  
Intel’s chip, never radiation-hardened, was 
introduced in the mid-70s and has been out of 
production for years.  The radiation-hardened 
Harris processor is also out of production.  A 
secondary purpose is applicable after the logic 
design validation is complete; it exploits the fact 
that Smalley3 is a self-test program running on the 
80k85. Smalley3 can be rerun as desired to verify 
the continued correct operation in laboratory stress 
testing and even in lunar orbit.  To serve this second 
purpose, two tests are included that exercise the 
parts of the 64KB RAM not occupied by Smalley3 
code. 

The lunar orbit environment, which has 
determined several programmatic factors in the 
requirements for and design of Smalley3, is the 
application of the 80k85 as the CPU for the LOLA 
DU (Lunar Orbiter Laser Altimeter Digital Unit) in 
the LRO (Lunar Reconnaissance Orbiter) to be 
launched in 2009. 

Smalley3 is named in honor of Ed Smalley of 
MIT’s Instrumentation Laboratory (now the Charles 
Stark Draper Laboratory, Inc.), who in the 1960s 
developed somewhat similar self-test software for 
the Apollo Guidance Computer (“AGC”) at the 
heart of the Primary Guidance Navigation and 
Control System (“PGNCS”) used in both the 
Command Module and the Lunar Module of the 
Apollo spacecraft.  Ed’s software, which we hereby 
retroactively name Smalley1 for the Block I AGC 
and Smalley2 for the Block II AGC, verified the 
function of all the AGC’s instructions to catch any 
faults caused by degradation of the hardware. 

The bulk of Smalley3 validates the logic 
design of the 80k85, that is, the “netlist” that 
determines how the FPGA’s multiplex gates and 
flip-flops are interconnected to functionally emulate 
an actual 8085.  In order to catch sneak paths, fan-in 
and fan-out problems, and subtle cross-talk issues, 
its function goes well beyond simply checking that 
each instruction does what it is supposed to do, by 
verifying also that it has no side effects on the state 



of the CPU or the I/O ports.  Smalley3 also verifies 
the absence of side effects that corrupt RAM 
locations which should be unaffected by the 
instruction under test; this is done for just 2 
locations that may be closely related to what that 
instruction does, and at greater intervals for the 
entire 64KB SRAM.  Finally, there are two tests of 
the approximately 55KB of SRAM not needed for 
Smalley3 code.  One, called “Yozzle” in memory of 
a Honeywell 800/1800 tape drive diagnostic from 
the ’60s, stresses the memory by forcing very 
frequent bit value reversals.  The other applies the 
theory of pattern-sensitive faults (“PSF”) to catch 
any cross-talk between each bit of memory and the 
bits immediately adjacent in two dimensions. 

In the development laboratory environment, 
the 80k85 operates under the control of Bench 
Check Equipment (“BCE”) which functions as a 
console.  In a flight or all-up system test 
environment, all BCE commands are implemented 
through uplink. 

In the LOLA flight configuration, the 64KB 
SRAM is overlaid from EEPROM pages; several of 
these contain copies of the operational flight 
program, and another contains the approximately 
10KB Smalley3 program.  When it is the active 
overlay, Smalley3 controls the entire 64KB address 
space of the 80k85. 

Top-Level Design of Smalley3 
A Smalley3 run consists of one or more Test 

Cycles, either a specified number or indefinitely 
until a fault or a manual stop occurs.  Because the 
pseudo-random seed is not re-initialized between 
Test Cycles, multiple cycles do generate different 
sequences of random data.  The RAM subsystem 
tests (Yozzle and PSF) occur only at the end of an 
automatically halted run. 

Each Test Cycle in a run tests a specified 
subset of the ten functional groups.  Within each 
functional group, testing is performed on a specified 
subset of its functionally distinct operations.  For 
each distinct operation, testing covers a specified 
subset of its parametric variations as defined by all 
8 bits of the first byte (e.g., distinguishing MOV 
A,M from MOV D,H).  For each such parametric 
variation, testing used 16 systematic data value sets 
and a specified number of pseudo-random data sets.  

All this flexibility, which in the event has been 
lightly used, seems complex but is driven quite 
simply by tables for each level.  The specifications 
mentioned above are performed mostly by patching 
the tables, and in some cases by initializing a few 
input ports. 

The RAM corruption check can be run at any 
of these levels (as noted above), but in any case 
runs once at the end of each automatically halted 
run, whether or not a fault was detected.  This 
supports a major goal of presenting a maximum of 
information for analysis whenever a fault stops a 
run. 

Input operations are tested by periodic loads of 
the input ports generated by the BCE at intervals 
that are regular but look truly random to the 80k85 
instruction flow.  When read by the IN instruction 
during such a load, the value read may be old, new, 
or a mixture.  Output operations depend on reading 
the values back from the relevant output port. 

In accordance with the designed interrupt 
schedule in the spacecraft, the four types of 
interrupts are triggered by the BCE in a regular 
sequence, separated to prevent any problems from 
the lack of priority and maskability.  This regular 
sequence, like that of input data, looks truly random 
from the point of view of instruction flow. 

Design Considerations in Smalley3 
Ideally, every instruction would be tested in 

every possible machine state, but realistically 
what’s possible is a considerable variety of central 
register and RAM states, comprising not only the 
registers and RAM locations involved in the 
instruction, but also the other registers.  This variety 
is described below under Systematic or Random 
Data Environment. 

Other principles governing instruction testing 
include watching as widely as is practicable for 
unintended side effects, minimizing the inherent 
“conflict of interest” when a computer tests itself, 
and presenting for analysis enough data to handle 
multiple errors arising from a single fault.  These 
are described below under Instruction Testing. 

Rigorous and thorough testing of input/output 
operations has many aspects that don’t figure in 



other instruction types.  These get a section of their 
own, Input/Output Testing. 

Similarly, external interrupts are a major 
special case, described below under Interrupt 
Testing. 

Detection of unintended corruption of RAM 
contents required some innovative developments 
described below under RAM Corruption Detection. 

Finally, there is a section covering the Yozzle 
and PSF tests under RAM Subsystem Testing. 

Systematic or Random Data Environment 
The artificial machine-state data that varies the 

environment in which each instruction test runs is 
placed into all possible register pairs before the test, 
with the obvious exception of PC.  There is also a 
restriction on the range of values placed into SP, to 
prevent stack operations or interrupts from stepping 
on Smalley3’s code or scratch locations.  This is a 
case where the flags and accumulator are treated as 
a pair, so that the arbitrary values are imposed on 
the condition codes as well as the ordinary registers. 

Artificial machine-state data is also used for 
the address of a pair of bytes in RAM and for their 
initial contents.  The address is in a restricted range 
of values to avoid stepping on the stack or on 
Smalley3’s code or scratch locations.  Furthermore, 
3-byte instructions are made to use this address, and 
2-byte instructions are made to use artificial data as 
either immediate data or an I/O port address, as 
appropriate. 

Systematic Artificial Data Sets 
The goal here is to include sixteen of the most 

“interesting and edgy” patterns of bits: heavy on the 
ones, heavy on the zeros, alternating ones & zeros, 
etc.  For efficiency, each pattern is generated as a 
pair of bytes even though sometimes only half the 
pattern is used.  Each systematic data pattern is 
placed in all the machine-state registers and the 
selected port and RAM locations, subject to the 
constraints on SP and the RAM address, so that 
whatever is interesting about it will apply to as 
much of the total machine state as possible.  In 
systematic mode, Smalley3’s Content Engine 
composes sixteen patterns of 16 bits from the 
following categories: 

• All 16 bits the same; 

• Alternating 8 zeros with 8 ones; 
• 4 zeros, 4 ones, 4 zeros, 4 ones; 
• Alternating pairs of zeros and ones; 
• Alternating zero and one bits. 

Pseudo-Random Artificial Data Sets 
An 8-bit Linear Feedback Shift Register 

(LFSR) is implemented in Smalley3’s code, with 
special-case logic to prevent 00000000 from being 
a lockup state, to cycle in a non-obvious sequence 
through all the 256 states of one byte.  This function 
is called a Pseudo-Random Number Generator 
(PRNG), and is called twice by the Content Engine 
in random mode to produce each pseudo-random 
16-bit pattern. 

In contrast to the systematic mode, each 
register pair, RAM location, etc. gets a different 
PRNG value, applying required constraints as 
appropriate.  The seed value is never reset; that’s 
why repeated Test Cycles get different values for 
each particular instruction test, increasing the odds 
of finding the rarest and most obscure data pattern 
sensitivities. 

Instruction Testing 
Each instruction test must verify that the 

instruction does everything it is supposed to do, and 
nothing else.  Any given instruction properly affects 
only a small part of the machine state (often, just 
one register), but its unintended side effects could 
affect any part of the total machine state.  As we 
said before, we had to limit the scope in which 
unintended side effects are detected during the 
instruction test: 

• All the central and special registers; 
• The most relevant two bytes of RAM, 

which are the top 2 bytes of the stack 
when appropriate, or just two bytes 
arbitrarily chosen when none are 
relevant; 

• The most relevant I/O port, or just one 
arbitrarily chosen when none is relevant. 

Initialize, Predict, and Verify Machine State 
Smalley3’s scratch locations include three 

instances of the limited machine state, called PRE, 
POST, and FOUND.  The PRE values are of course 
filled in from the artificial data sets described 
above.  The POST values are initialized from the 



PRE values, since any one instruction is supposed 
to affect only a little of even the limited state. 

Then ad hoc logic for each parametric 
variation of each instruction type predicts what the 
instruction should do, and updates the POST values 
accordingly. 

After the instruction is executed (under strict 
control to keep it from gaining control of the 
machine), the actual state of the machine goes into 
the FOUND values.  Verification consists of 
comparing FOUND to POST values over the entire 
limited machine state. 

Principles for Prediction 
Ideally, each instruction’s results would be 

predicted by code that includes no instances of the 
instruction under test.  In a self-test program, this is 
naturally not possible, but a substantial step in this 
direction was nonetheless achieved in Smalley3.  In 
several cases, the predicted results are obtained 
from tables entered with the input data as 
arguments.  Specifically, there is a routine called 
Blackadder that predicts the results of all addition 
and subtraction operations using 256-byte tables 
whose addresses are aligned so that entering them is 
nothing but setting the L register (lower half of 
indirect address).  The only way the 80k85’s adder 
takes part in this process is the unavoidable one of 
incrementing PC. 

Prediction of the results of Boolean operations 
loops through the 8 bit positions, shifting as 
required and using the condition codes to control 
branching, but includes no Boolean operations. 

Verification and Analysis Support 
Smalley3’s scratch locations are laid out in a 

concentrated area of low memory so that a small 
memory dump will supply as much information as 
possible about what error or errors are induced by a 
fault.  The PRE, POST, and FOUND instances 
described above are in locations aligned to facilitate 
manual comparison.  There are also a number of 
variables called BADS that contain the exclusive 
OR of the FOUND and POST instances, to exhibit 
clearly which bits are wrong.  These are arranged in 
a tree to facilitate navigating to the error bits: a 
master byte FBADS shows not only which flag bits 
are bad but uses non-flag bit positions to point to 
other BADS data.  One of these is RBADS, which 
is simply a set of bits indicating which registers 

contain discrepancies, thereby pointing in effect to 
whichever BADS value actually exhibits the 
discrepancies. 

Special Note on “Testing” HLT 
In a self-check program, there is no way to 

make HLT do anything but halt the machine, which 
means there’s no hope of filling in the FOUND 
variables.  However, the test engineer has some 
control over what the machine state is when HLT is 
used to bring a test run to an automatic end, because 
the same sort of setup of PRE and POST variables 
is done before such a HLT.  Observation of the 
machine’s actual state when halted can be 
compared against the POST values.  Variations in 
the manual setup of the next run (initial random 
seed, number of random data sets per instruction, 
etc.) will force changes in the PRE-POST setup for 
the next run’s halt.  You can’t control what the new 
values will be, but they will almost certainly be 
different. 

Input/Output Testing 
The customary way to test I/O functions is to 

write output ports and incorporate some kind of 
wraparound in the BCE to allow those values to be 
read back in and compared to the original outputs.  
In this project, the BCE couldn’t do that, so it 
doesn’t contribute to output testing at all. 

The 80k85’s 128 input ports can be initialized 
by the BCE, and are updated periodically with a 
mixture of systematic and pseudo-random data 
produced by the BCE.  As noted above, the 
updating of a particular port can be caught in a 
partial state by an IN instruction, so software logic 
had to be introduced to discard half-baked data. 

Systematic and Random Input Data 
When just one or a limited number of Test 

Cycles are run, the BCE supplies only pseudo-
random data, but in an open-ended test run, it 
supplies a few systematic data inputs first and then 
the pseudo-random data.  The systematic data is all 
zeros into all ports followed by all ones into all 
ports, which is certainly a minimum set. 

Late in the project we noticed that these would 
not allow detection of a wiring error that reversed 
two bit positions in some port(s).  We identified 3 
more systematic data sets that would provide this 
coverage but did not have time to incorporate them. 



Verifying Input Data 
Verifying the input of systematic data is 

straightforward because Smalley3 knows a priori 
what the values should be.  No such knowledge can 
be feasibly provided for random data, so we 
borrowed an old magnetic tape SEC-DED 
technique from the 1960’s, Honeywell 800/1800’s 
“Orthotronic Control®” in which each port’s data 
obeys a parity rule and there is a longitudinal 
checksum for each bit position over the 128 input 
ports as a whole.  This allows Smalley3 to identify 
a single bad port, and even a single bad bit within it; 
if there are multiple errors, at least one bad port is 
identified.  To gain a little extra coverage, the parity 
rule for each random data set is the reverse of the 
one used in the previous set. 

Asynchronicity Issues in Testing Inputs 
The replacement of one data set in the input 

ports by another, though regular and straight-
forward from the BCE’s point of view, is a long 
asynchronous process from Smalley3’s point of 
view.  Our approach is to assign the highest-
numbered input port, 7F, as the longitudinal 
checksum and arbitrarily rule out 00000000 as a 
checksum value.  The BCE, when ready to replace 
an input data set, first zeros port 7F as a signal that 
the input ports as a whole are not in a stable state.  
Smalley3 samples port 7F often enough to see the 
nonzero-to-zero transition before reading any port 
that will be affected.  Then it suspends reading until 
port 7F becomes nonzero again, which is the BCE’s 
signal that the new update is complete. 

Because the ports are updated in order of 
ascending port addresses, all of ports 00-7E are 
guaranteed to contain new stable values when the 
nonzero checksum appears.  Thus the “half-baked 
data” issue arises only for the checksum itself, but 
this doesn’t matter because the input testing logic 
starts reading the new data set at port 00, so the 
checksum is long since stable when it finally gets 
read. 

Smalley3 continues to loop through the input 
ports, using the SEC-DED logic each time until port 
7F again becomes zero, at which point the current 
loop is abandoned to await the completion of the 
new data set.  This leaves one narrow crack of a 
“half-baked data” problem, if the sampling of port 
7F happens to coincide with the zeroing of it in 
such a way that the IN instruction finds some but 

not all of the one bits still there.  That situation is 
perceived as a longitudinal checksum error, so an 
apparently bad checksum is read again to see if it 
has settled out to zero, in which case the current 
port loop is abandoned as above. 

Verifying Output Data 
Using the regular data sets from the Content 

Engine, Smalley3 loops through the output ports 
80-FF, writing systematic or random data and then 
reading it back.  That leaves uncovered the 
correctness of the wiring from the output ports to 
the outside world; we identified but didn’t have the 
resources to implement a way to gain such coverage 
within the BCE’s functional limitations.  It would 
involve the BCE remembering the last data set it 
put into the input ports, and Smalley3 would copy 
each input data set into the corresponding output 
ports, leaving it up to the BCE to read the output 
ports and decide whether that data matched the last 
input data set. 

Interrupt Testing 
Interrupts are triggered by the BCE at regular 

intervals, and are separated in time so that they can 
be assumed to arrive “one at a time” and no 
interrupt will arrive while another is still in 
progress, but each arrival seems to the 80k85 
instruction flow to be at a completely random time.  
Smalley3 retains some control by planting its own 
addresses in the interrupt vector, but the 
PRE/POST/FOUND architecture for testing 
instructions doesn’t apply.  Verification consists of 
checking that each interrupt uses its correct target 
location in low memory and saves and restores PC 
and SP correctly (since an interrupt is essentially an 
externally triggered CALL).  More important, we 
verify that it does not corrupt the progression of 
programmed logic driven by Smalley3, even though 
it necessarily makes one modification by leaving 
the “resume address” in RAM next to the top of the 
stack. 

RAM Corruption Detection 
This feature uses the 512 highest addresses in 

RAM to maintain row and column XOR-style 
checksums for all 64K bytes of RAM, where “row” 
means 256 consecutive locations and “column” 
means 256 locations whose addresses are 256 apart.  
The idea is that any one-byte corruption can be 



located by discovering checksum errors for its row 
(low half of its address) and column (high half of its 
address).  Furthermore, the check can reconstruct 
the corrupted byte and therefore shows which bits 
are bad.  Row 254 (addresses FExx) contains 
checksums for 256 columns each covering row 
positions 0-253, and row 255 (addresses FFxx) 
contains checksums of every row including itself. 

An interesting sidelight of the checking routine 
is the fact that the loop that XORs all the bytes that 
contribute to a given checksum cannot modify any 
part of RAM while it runs, and must maintain all of 
its state information in central registers. 

The actual coverage obtained by this method is 
a little less than the full 64K bytes, because it would 
use too much time to construct the checksums often 
enough.  Coverage of Smalley3’s scratch locations 
is negated by a scheme of shadow locations that 
prevent those locations from making any 
contribution to the checksums.  That is, each scratch 
location is shadowed by 3 other locations, one in 
the same row, one in the same column, and one at 
the intersection of those two shadows.  Each triad of 
shadows is copied from its scratch location at the 
beginning of the run, before the checksums are 
initially generated.  Then when it’s time to perform 
a check, each triad is updated from its scratch 
location (which would hide any corruption of the 
scratch location itself), but some coverage is 
regained by verifying that the 3 shadows agree with 
each other, showing that none of them has been 
corrupted since the previous check.  A scheme of 
restorations applies to stack and other RAM 
locations outside the scratch area which have been 
properly modified by instruction testing. 

There is also some logic to ignore any stack 
area location that may have been affected by an 
interrupt.  Having built all this logic to handle 
scratch locations and made it work, we have to 
wonder whether it was the best use of resources, 
compared to a much simpler scheme to generate 
and check checksums of all of RAM except the 
scratch area.  For the purposes of this paper, it 
serves as an interesting demonstration of what’s 
possible; for purposes of the spacecraft, it does no 
harm and does obtain a little coverage in the scratch 
area. 

RAM Subsystem Testing 
Two tests, philosophically distinct from the 

design verification focus discussed so far, were 
added for the flight software.  They are addressed to 
electrical design issues: the ability of the RAM to 
withstand abnormally high rates of state reversal, 
and possible crosstalk between bit positions that are 
“adjacent” in some sense. 

Stress RAM by Rapid Bit Reversals: Yozzle 
The name Yozzle is taken from a Honeywell 

mainframe diagnostic used in the 1960s to stress a 
magnetic tape drive’s servos and tape handler by 
“yozzling,” i.e. reversing the direction of the tape’s 
motion as rapidly as possible. 

There can be only one occurrence of Yozzle 
per run, following the final occurrence of Elliot-
Ness and preceding the one occurrence of PSF.  
Like PSF, it operates on the contiguous majority of 
RAM addresses above Smalley3’s program code, 
that is, about 54KB out of the total of 64KB. 

The essence of this stress test is to fill the 
subject RAM with alternating bytes such that every 
odd location contains the one’s complement of the 
even location preceding it, and then reverse all 16 
bits of each such location pair repeatedly, as rapidly 
as possible, for a parametrically varying number of 
repetitions.  This is done by making each such pair 
the head of the stack, loading the one’s complement 
of the pair’s initial state into registers H and L, and 
using the XTHL (exchange top of stack with HL) 
instruction to do the reversals. 

Any failure discovered by the YOZZLE test 
places data in RAM, overlaying certain locations 
that are normally used by the instruction testing but 
do not contribute information to the dump analysis.  
This data includes the address where RAM failed, 
the intended content, and the found content, each 
two bytes. 

Pattern-Sensitive Testing of RAM: PSF 
This test is based on John P. Hayes, Testing 

Memories for Single-Cell Pattern-Sensitive Faults 
[6].  As will be seen, it cannot be a rigorously exact 
implementation of the documented test because of 
the 80k85’s architecture. 

Hayes's notation is based on the "cell," that is, 
storage in RAM for a single bit, and on a tiling 
"neighborhood" consisting of a particular cell and 4 



adjacent cells, immediately left, right, above, and 
below the cell under consideration.  In the RAM 
occupied by Smalley3, the memory range to be 
tested is approximately the same as for Yozzle; 
however, there must be a whole number of 256-byte 
rows.  The lowest available whole row is 2700-
27FF, so the number of cells in the address range is 
444,416 (55,552 bytes). 

The documented test seems to assume the 
addressing of individual bits in a RAM chip, which 
is a normal environment for RAM testing in a chip 
foundry, but the 80k85 architecture addresses RAM 
bits 8 at a time.  We assigned to the words “left” 
and “right” the meanings that are (mostly) intuitive 
in 80k85 architecture: 

• left and right bit positions within a byte; 
• to the left of the leftmost bit position of a 

byte is the rightmost bit position of the 
next-lower-addressed byte; 

• to the right of the rightmost bit position 
of a byte is the leftmost bit position of 
the next-higher-addressed byte; 

• but there is a wraparound rule to prevent 
the next byte (whether higher or lower) 
from going outside the row xx00-xxFF. 

We assigned to the words “above” and “below” 
similarly intuitive meanings: 

• above a bit position in any byte is the 
same bit position in the byte whose 
address is 256 higher than the subject 
byte; 

• below a bit position in any byte is the 
same bit position in the byte whose 
address is 256 lower than the subject 
byte; 

• but instead of a vertical wraparound rule, 
we restrict the “top” row FF00-FFFF to 
contain bits “above” bytes in row FE00-
FEFF in this sense, 

• and we restrict the “bottom” row 2700-
27FF to contain bits “below” bytes in 
row 2800-28FF in this sense. 

Even though Smalley3’s PSF reads and writes 
bits 8 at a time, we believe that the fault coverage is 
substantially the same.  The logic is too complex to 
try to summarize here; interested parties can consult 

the reference or even obtain the heavily commented 
Smalley3 source code from OLD at GSFC. 

Summary and Conclusions 

Technical Summary 
The fact that Smalley3 occupies the low 9.3 

kbytes of RAM not only demonstrates how much 
function can be packed into a modest-sized 
assembly-language program, but also suggests how 
software reliability suitable for spacecraft can be 
obtained (in part) by staying away from the 
gigabytes of OS and related infrasoftware that are 
common to PCs.  Of course, the absence of any 
requirement for a graphical interface helps too. 

Only 5.8 kbytes are executable code; 2.7 
kbytes are tables, and 1.1 kbytes are variables.  
Those add up to more than 9.3 kbytes because some 
of the initialization code gets overlaid by variables. 

Running time for each instruction test cycle 
with a maximum set of Monte Carlo initial states 
for each instruction is 14 seconds.  Each cycle of 
the RAM corruption detector “Elliot-Ness” takes 
about 0.1 second; these can be commanded to occur 
at 6 different frequencies, but only the higher 
frequencies consume significant running time, 1.8 
hours maximum.  The Yozzle test runs for about ¼ 
second, but the PSF test takes about 500 seconds.  
All times are based on a 4 MIPS processing rate. 

Programmatic Observations 
The 80k85, a small 8-bit microprocessor with 

no instructions as complicated as even 
multiplication, seems to present a simple problem in 
design verification.  However, the requirements for 
rigorous and thorough testing cast quite a long 
shadow for any computer, no matter how simple: 

• largest practicable variety of initial 
machine states for each instruction; 

• detection of largest practicable variety of 
unintended side effects of any 
instruction; 

• detection of largest practicable variety of 
interference between programmed and 
unprogrammed activity (i.e., interrupts 
and arrival of inputs); 



• verification of input/output wiring 
harness configurations; 

• excitation of RAM components in ways 
that normal software wouldn’t induce. 

Despite the complexity to fulfill these 
requirements, the development of Smalley3 itself 
was fairly straightforward thanks to a good-quality 
8085 simulator usable at the development site.  
Most of the bugs in Smalley3 code resembled 
80k85 faults and were readily resolved by using the 
dump analysis features addressing such faults, with 
a major assist from the simulator’s instruction-level 
trace.  However, the fidelity of the 8085 simulator 
to the 80k85 was less than complete and had to be 
worked around.  Also, test runs often had to 
incorporate artificial simplifications of long and 
complex runs because the simulator couldn’t record 
more than 1 million instruction executions. 

Some of the complexities could have been 
reduced or avoided by enhancements of the 80k85 
and BCE design: 

• 80k85 design could have been more of a 
clone of the 8085 design without hurting 
objectives; 

• BCE could have supported wrap-back of 
outputs to inputs to facilitate I/O testing; 

• BCE/80k85 interface could have 
provided an interlock to prevent the 
reading of an input port in a “half-baked” 
(partially updated) state. 

Scalability Considerations 
What if the processor had a 16-bit, 32-bit, or 

64-bit architecture?  There would certainly be a 
larger number of functionally distinct instructions, 
and they would include more complex functions 
like multiply and divide, floating point, possibly 
even vector and trig functions and decimal 
arithmetic.  That much would produce an increase 
in the amount self-check code, and require 
enormously larger look-up tables, but no great 
change in qualitative complexity.  However, the 
introduction of base and index registers would 
complicate the behaviors of all instructions and 
increase the variety of initial machine states. 

We would expect vastly greater amounts of 
RAM, which would help with the larger tables 

(though probably not enough), and would take 
considerably more time to check.  There might also 
be a more complex I/O architecture with, say, 
programmed channels instead of just ports. 

This challenge could perhaps be eased if the 
designs of the bigger computers included some 
Built-In Self-Test logic.  For example, in 1970 the 
MIT Instrumentation Lab designed a SIRU 
(Strapdown Inertial Measurement Unit) controller 
whose arithmetic instructions calculated both direct 
and complement results and compared them.  Still, 
that doesn’t overcome the need for design 
verification and operational checking of the Built-In 
Self-Test logic.  The boldest argument against such 
logic that we can recall was made by Seymour 
Cray, who left parity checking out of the design of 
the CDC 6600 because, as he said, you never can 
tell whether your checking logic is working. 

Achievements and Utilization 
In support of the 80k85 development phase, 

Smalley3 made three major contributions: 

• Caught a failure to carry a design detail 
into the netlist—this affected CMP B 
(Compare Accumulator vs. B register), 
which evidently hadn’t occurred in the 
testing of application code; 

• Identified a weak point in the electrical 
design of non-80k85 parts of the FPGA 
chip, based on a fan-out limit violation—
seen in low-voltage tests that made a 
particular instruction fail; 

• Exposed a poor margin in CPU-memory 
slew rate during high-temperature 
testing. 

These achievements motivated NASA to apply 
Smalley3 also to the operational phase, so that any 
suspicion regarding the LOLA DU’s operation on 
lunar orbit can be investigated to see whether the 
root cause is a fault in the 80k85.  This application 
was the impetus for adding the RAM subsystem 
testing. 



Controversial Observation 

A Minority Opinion on a Design Point 
This is a minority opinion in the sense that 

only one of the three authors (Hugh Blair-Smith) 
embraces it.  In a nutshell: the full power of 
external interrupts is more trouble in an embedded 
system than it’s worth.  Mainframes and other 
highly multi-tasking systems need interrupts to 
arbitrate among execution streams from many 
independent sources, some of which can be 
expected to do bad things like infinite loops.  In a 
small embedded processor, the number of tasks is 
limited and well known, and their interaction is 
specified and designed in great detail.  That means 
that frequent sampling or polling for external 
events, at points convenient to the logic, becomes 
feasible. 

In the Space Shuttle GPC software, the rules 
for synchronizing redundant-set machines require 
essentially this scheme.  Interrupts exist, but they 
don’t do anything until all GPCs in the set agree on 
what’s the highest-priority thing to do.  These 
agreements are called “sync points,” and one of the 
rules is that any routine that runs longer than a 
millisecond must perform a programmed sync point 
to effectively poll the interrupt subsystem. 

The full flexibility of interrupt logic makes 
design verification harder and the possible paths 
through the code more numerous and less well 
known.  Having said that, this is a controversial 
viewpoint, partly because considering backing away 
from interrupts is something of a cultural shock in 
real-time control, and partly because it can be 
mistaken for a plea for excessively rigid “washing-
machine cycle” multi-tasking logic, the sort of thing 
that would not have survived the Apollo 11 
program alarm (1202) caused by an unforeseen 
torrent of DMA cycles.  Task priorities, which did 
save Apollo 11, do still matter. 
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